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Abstract. A simple variational study of the ground-state properties of an elecuon-hole system 
confined lo a quantum bax is presented. A two-parameter trial wavefunction which is asymmetric 
with respecl to the cwrdinates of the two parlicles is imoduced to account for both lhe 
localization of the heavy particle and he correlation between the two partides. The mass 
dependence of the ground-state energy and Le average particle separation is discussed. 

1. Introduction 

Exciton dynamics in quantum-well (QW) structures have been intensively studied in recent 
years, both experimentally and theoretically [I]. These QW structures are systems of reduced 
dimensionality with properties different from bulk semiconductor properties; electrons in 
these systems are free to move in a plane, but motion perpendicular to the plane is 
confined by a depletion potential. Experimentally, the quantum confinement effect of 
Wannier excitons in QW structures is most directly observed as the high-energy shift of 
the interband absorption or luminescence peak as the size decreases. These size-dependent 
modifications of the optical and electronic properties suggest the potential applicability 
to the ultrafast non-linear optical devices, which seems to have motivated some of the 
recent investigations. There are at present several classes of new photonic devices which 
are all based on the excitonic properties of semiconductor Qw struciures. These include 
modulators [a] ,  interferometers [31. self-electrooptic effect devices 141 and switches [3]. 

With the recent advances in the art of microfabrication, quantum microstructures can 
now be fabricated, that exhibit quantum carrier confinement in two dimensions (quantum 
well wires [5,6]) and in all three dimensions (quantum boxes [7,8] and microcrystallites 
19, IO]). These structures provide new systems for the study of quantum confinement 
effects. The size quantization effect is due to the competition between the attractive two- 
body Coulomb force and the confining force at the boundary. When the characteristic 
length of the microstructure is large, the electron-hole pair will have the properties of a 
weakly confined exciton with effective Bohr radius aB. As the size of the system decreases 
and becomes comparable to OB, the electron and the hole will primarily be confined as 
individual particles with little spatial correlation [11-13]. In general, the properties of a 
Wannier exciton i s  strongly dependent on the shape or the dimensionality of the quantum 
microstructures [ 141. Kayanuma recently studied the shape dependence of the quantum size 
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effect using the variational approach [IS]. He considered an exciton confined to a cylinder 
of variable radius and length. By varying the radius and length he could model a zero-, 
one-, two- and three-dimensional geometry. It is observed that quantum confinement effects 
are most severe in quantum boxes that are confined in all three dimensions. However, the 
computed excitonic binding energy depends only on the reduced mass of the exciton because 
of the symmetric form of the trial wavefunction under the exchange of the coordinates of the 
electron and hole. Clearly, in the cases where the electron and hole masses differ greatly, the 
symmetrical unsufz will no longer be adequate, and a more complicated trial wavefunction 
should be used instead. As shown in previous studies of Wannier excitons in quantum 
dots [la, 171, using a trial wavefunction with different parameters for the electron and hole 
will lead to an asymmetry in the optimal values of the variational parameters. This is due to 
the fact that the heavier particle is more localized and cannot approach the boundary since 
it should remain closer to the centre-of-mass. Thus, the effect of the confining wall has the 
biggest impact on the lighter particle. 

In the present paper we study the ground-state properties of an electron-hole system 
confined to a quantum box using an asymmetrical trial wavefunction with respect to the 
electron and hole coordinates. In particular, we investigate the mass dependence of the 
ground-state properties for a fixed reduced mass. We carry out a variational calculation in 
the spirit of previous calculations on quantum dots [ I  1,16.17] using a trial wavefunction 
with only two parameters. In this approach, one parameter describes the correlation between 
the two particles whereas the other parameter builds in the degree of localization of the 
heavier particle. Thus, this asymmetrical wavefunction has the ability to capture the mass 
dependence of the ground-state properties. In the transition regime the mass dependence 
becomes most transparent It is found that the heavier the total mass is, the lower the energy 
and the smaller the average distance between the two particles will be. This dependence 
is important in quantum boxes constructed from some semiconductor materials like GaAs 
and AIGaAs, where the hole mass can be much larger than the electron mass [IS]. Similar 
effects have also been studied in type-U quantum structures [19]. 
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2. Model 

Microfabricated quantum boxes are constructed from n m w  two-dimensional quantum 
wells by processing the wells to laterally confine the two-dimensional motion. Typically, 
the width w of the two-dimensional quantum well is an order of magnitude less than the 
length L of the side of the box, so the box is a thin plate or disk. We shall here model 
the quantum box as a square plate with sides of length L and width w. The effectivemass 
Hamiltonian for an electron and a hole in the quantum box is given by 

where 

if Ixil, lyil < L/Z and lzil < w/Z  (" 00 otherwise. 
v , =  

Here, for simplicity, we have assumed the effective masses in the plane to be isotropic 
and an infinite confining potential. The exciton variational ground-state wavefunction rl, is 
chosen to be of the following form 

*(pes Th) ="&(Ts)hh(Th)s(Te. Th) (3) 
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where 

= cos(k-d c0s(kye) cos(qz.) exp(-q,rZ) 
@h(Th) = cos(kxh) cos@yh) cos(qzh) exp(-l)hrt) 

s (rc ,  r h )  = exp{-a.[(x. - x d  + (ye - yh)'11 (4)  
n 

with k = H / L  and q = n /w .  Here N is a normalization constant determined by requiring 
the norm of Ilr (with proper measure) to be one. The parameters qe and Oh describe 
the localization of the electron and hole, respectively. Following Bryant [131, we have (for 
computational convenience) written the correlation function $(re, Q) as a linear combination 
of Gaussian functions, with the parameters an regulating the stsength of the correlation 
between the electron and the hole. Accurate energies are obtained by use of 5-10 Gaussians. 
Since our objective in this study is a basic understanding of the mass dependence of the 
ground-state properties of the system, we shall, for the sake of simplicity, confine ourselves 
to only one Gaussian. The corresponding wavefunction is therefore less accurate, but still 
good enough to capture the essential physics. Furthermore. it should be noted that no 
correlation of z, and zh has been included in the trial wavefunction because typical well 
widths w' are so small that in the z-direction the electron and the hole behave l i e  individual 
particles with little spatial correlation. 

According to the variational principle the best estimate for the ground-state energy is 
obtained by minimizing E = (H) with respect to the variational parameters. After some 
algebra we can write the energy in the following form 

with 

(6) 

and 

Fi(Xi) = 4k tan(kxt)(qixi *(U(& - Xh)) f 4$X: & 8qi(YXi(Xe - Xh) 4- h 2 ( X e  - Xh)' 

(7) 

where the 'minus' sign holds for i = e (the electron coordinate), and the 'plus' sign holds 
for i = h (the hole coordinate). (Note, to derive the energy of the trial wavefunction the 
following formulae are useful: 

ayjay = - [k + zlliXi f wXe - Xh)lw 

where the same sign convention holds.) It is clear that for a general box of size L x L x w, 
to evaluate the energy E one needs to perform a six-dimensional integration, and this, of 
course, constitutes a formidable numerical task if one is to use an adequate grid spacing. 
Thus, in the following we shall confine ourselves to the most relevant situation for which 
w (< L. In that case the integral in the z-direction drops out. In other words, we model 
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our quantum box to be effectively of zera thickness, i.e. w = 0, and neglect the variations 
in the z-direction. As a result, the energy E@, qi) reduces to the form 
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where &(CY, qi) can be written as 

and the functions F;(xi) are defined in equation (7). Hence, we are then left with a four- 
dimensional integral over the electron- and hole-coordinates in the x- and y-direction. 

0 (or equivalently exp(-qerZ) = 
I )  and let qh = TJ. Thus, the wavefunction rY is reduced to a two-parameter trial 
wavefunction, and the energy depends only on the two parameters q and (I: E = E @ ,  11). 
These two variational parameters q and CY incorporate the localization of the heavy hole and 
the correlation between the electron and the hole, respectively. Finally, the variational 
principle requires the energy E to be minimized with respect to the two variational 
parameters q and CY to obtain the best estimate for the ground-state energy. Although 
our variational ansatz is quite simple, it is able to capture the most relevant physics of the 
confined electron-hole system in which the hole is much heavier than the electron. 

To simplify the problem further, we shall choose qc 

3. Results and discussion 

For the units of length and energy we shall take the effective Bohr radius aB = 6h2/pe2 
and the effective Rydberg energy Ryd = pe4/2EZh2, respectively. Also, we shall let ml be 
the mass of the heavier hole and m2 the electron mass. In figure 1 we show the minimum 
energy plotted against the size of the system for mass ratios U s m , / m 2  = 1 and IO. 
The overall behaviour is independent of the mass ratio and shows the familiar quantum 
size effect a transition at around L/aB zx 2 - 3 between a regime of exciton confinement 
(for large L)  and a regime of individual particle confinement (for small L). We have also 
calculated the electron-hole separation r: 

In figure 2 we have plotted r against L for the same set of mass ratios as in figure 1. Again, 
the overall behaviour is familiar and r goes linearly to zero as the system size decreases. 

It is instructive to study how the variational parameters CY and q vary with the system 
size as well. In figure 3 we show ala;' for the mass ratios U = 1 and IO. When the length 
L is decreased from a very large value L >> ag, CY decreases, and the correlation between 
the electron and the hole increases. However, as the system reaches a size of L N 2.5~~. (I 

increases rapidly, and the interparticle correlation decreases. For small systems the electron 
and hole are confined as individual particles with little spatial correlation. For instance, the 
characteristic correlation length is I/& = 0.22B for L = 0,lae; in other words, the 
Gaussian-type correlation function s is essentially equal to unity within the quantum box. 
Also, note that there is a slight mass dependence of cr in the transition region. In figure 4 
we show how q changes with the size of the quantum box. In the case of equal masses q 
is equal to zero. For mass ratio a = 10 we see a monotonic decrease of q to the limiting 
value of zero as L increases. The decay of q is most rapid for 0 < L < 3aB. 

. 
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Ua. 
Figure 1. Size dependence of lhe ground-state eneFgy for mass ratios U = m l / m ,  = 1 and IO. 
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Figure 2 Size dependence o l  the eleclron-hoie separation r for the same set of mass mum as 
in figure I 

804 , , , , , , , , , 
( 1 , 2 3 1 1 6 7 8 9  

Ua 

Figure 3. Plot of a/aG2 versus length L for mass ratios U = 1 and IO. 

So far we have concentrated on the quantum size effects and the overall L-dependence. 
However, one can also see a dependence on the mass ratio between the particles, especially 
in the transition region L l a ~  % 2 - 3. Here we choose the value L/ae  = 2.5 for our study, 
but qualitatively the mass dependence will not be much different for other values of L in 
this region. In figure 5 we show the ground-state energy plotted against the mass ratio U. 
As the mass ratio increases, the energy first decreases and then flattens out. This behaviour 
is mainly attributed to the decrease of kinetic energy of the heavy particle. In figure 6 we 
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Lla, 
Figure 4. Variatiorwi parameter q versus L. The c m e  is for lhe mass ratio a = IO. For equal 
masses q is identically zero. 

Figure 5. Minimum energy versus mass ratio for ienglh LIm = 2.5, 

0 18 I 
0 10 10 I O  a0 50 BO m 80 

m , h  
Figure 6. The electron-hole separation r Venus mass ratio for lhe same length as in figure 5. 

plot r versus mass ratio. For large mass ratios the average distance becomes smaller. This 
is intuitively correct since the heavy particle is more localized and thereby exerts a more 
singular attractive force. 

We have also plotted the mass dependence of the variational parameters upon the mass 
ratio. In figures 7 and 8 we show IJ and (Y as a function of U ,  respectively. The variational 
parameter q in figure 7 describes the localization of the heavy hole. Since the characteristic 
length of localization of the hole is given by 1 / A .  a large value of q means a large degree 
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1 

m m ,  

Figure 7. Variational parameter 4 versus mass ratio, for the same length as in figure 5. 

0 10 a 30 a0 YI 60 70 8c 

mJm, 
Figure 8. Mass dependence ofthe VU-I~~IOM~ parameter ala,2 for the same length as in figure 5. 

of localization of the hole for a given L. From figure I we can see how this localization 
depends upon the mass of the heavy hole. When U increases, IJ increases, and the hole 
is strongly localized. In figure 8 we show the variational parameter a which governs the 
correlation between the electron and hole. It is clear that a is not as sensitive to the mass 
ratios as r~ since the Coulomb interaction is independent of the mass. In the transition region 
there is only a slight mass dependence of a as a result of localization of charge associated 
with the heavy hole. 

In summary we have studied the mass dependence of the ground-state energy and the 
average particle separation for an electron-hole system confined to a quantum box. By using 
a simple two-parameter trial wavefunction we could explain the behaviour as an effect of 
the localization of the heavy particle. In this variational approach one parameter describes 
the correlation between the two particles whereas the other parameter builds in the degree 
of localization of the heavier particle. In the present mode1 the thickness of the quantum 
box is assumed to be small. A quantum box of finite thickness will be of interest for future 
studies and should lead to modifications of the properties. 
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